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STRUCTURE ELUCIDATION WITH LANTHANIDE INDUCED SHIFTS. 14. 

STRUCTURAL EFFECTS ON EQUILIBRIA BETWEEN NITRILES AND EU(FOD)3.  1 

Key Words: Lanthanide S h i f t  Reagents, NMR Spectra, 
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INTRODUCTION 

In recent years lanthanide s h i f t  reagents have become in- 

creasingly valuable a s  a ids  i n  t he  ana lys i s  of organic s t ruc tu res  

by nmr They can be used qua l i t a t ive ly  i n  order t o  

simplify nmr spec t r a ,  and the lanthanide induced s h i f t s  can a l s o  

be used quan t i t a t ive ly  f o r  t he  mathamatical ana lys i s  of a proposed 

s t r u ~ t u r e . ~ - ~  Whatever the  pa r t i cu la r  case may demand, these 

reagents can be u t i l i z e d  most e f f ec  

between s h i f t  reagent and subs t r a t e  

previously reported7 the b i n d i n g  ab 

t iona l  groups w i t h  Eu(fod)3, and  we 

e f f e c t s  of  s t ruc tu ra l  var ia t ion  on 

ive ly  when the equ i l ib r i a  

a re  well understood. We have 

l i t i e s  of a var ie ty  of func- 

have a l s o  discussed the  

he corresponding equi 1 i bri a o 

8 

ketones. We now consider s t ruc tu ra l  e f f e c t s  on the association 

329 
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330 RABER, BEAUMONT, AND JOHNSTON 

e q u i l i b r i a  f o r  a var ie ty  of n i t r i l e s  with Eu(fod)3 in  CC14. 

RESULTS AND DISCUSSION 

The lanthanide induced s h i f t s  f o r  nitr i les 1-32 w i t h  Eu(fod)3 

in CC14 were measured over a range of 1anthanide:substrate r a t i o s ,  

and nonlinear regression ana lys i s  by the  method of Shapiro and 

Johnston afforded the equilibrium constants.  Values of K1, t he  

assoc ia t ion  constant f o r  t he  1 : l  complex, a r e  reported in Tables 

9 

1-4, 

Although n i t r i l e s  1-32 encompass a wide range of s t ruc tu ra l  

changes, the va r i a t ion  i n  t he  equilibrium constants i s  r e l a t i v e l y  

small. The  l a r g e s t  and smal les t  assoc ia t ion  cons tan ts  ( f o r  13 and 

- 23, respec t ive ly)  d i f f e r  by a f a c t o r  of 200, b u t  i f  these two data 

points a r e  excluded the  range (bounded by the  constants f o r  9 and 

- 25)  i s  decreased t o  a f a c t o r  of only 22. 

t r i l e s  studied the re fo re  e x h i b i t  f r e e  energies of assoc ia t ion  w i t h  

Eu(fod)3 i n  CC14 which f a l l  i n  the  range of -2.1 t o  -4.0 kcal/mol. 

Nearly a l l  of the n i -  

Our e a r l i e r  as well as those of Rackham have 

indicated t h a t  b o t h  s t e r i c  and e l ec t ron ic  e f f e c t s  play important 

ro l e s  i n  determining the magnitude of the assoc ia t ion  constants.  

S t e r i c  e f f e c t s  were found t o  be p a r t i c u l a r l y  important w i t h  ke- 
8 tones when the  pos i t ion  a t o  the carbonyl group i s  quaternary. 

On t he  o the r  hand, we previously observed t h a t  the coupling 

pa t te rn  exhib i ted  by the proton c1 t o  the cyano group in cyclohex- 

anecarboni t r i le  (2) i s  unchanged upon addi t ion  of Eu(fod)3, and 

th i s  indicated t h a t  complexation does not s i g n i f i c a n t l y  perturb 

the conformational e q u i l i b r i ~ m . ’ ~  T h i s  i n  t u r n  suggested t h a t  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
4
:
1
5
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



LANTHANIDE INDUCED SHIFTS. 14 331 

TABLE 1 
1 A s s o c i a t i o n  Constants (K1, M- ) f o r  A c y c l i c  N i t r i l e s  

w i t h  E u ( f o d l 3  i n  CC14. 

b Compound E q u i l i b r i u m  Constanta 5* 

1 - 
2 - 
3 
x 

4 - 

5 - 

6 - 

7 - 

8 - 

CH3-CN 

CH3-CH2-CN 

CH3-CH2-CH2-CN 

CH 
1 3  

CH3-CH-CN 

y 3  

CH3 

CH3-C-CN 
I 

CH 
I 3  

CH3-CH-CH2-CN 

y 3  

CH3-F-CH2-CN 
CH3 

CH2-CN 

52 f 3 ( 3 )  

154 * 57 ( 3 )  

59 

251 

134 * 34 ( 5 )  

85 

155 

289 

0.00 

-0.10 

-0.12 

-0.20 

-0.30 

-0.14 

-0.16 

-0.19 

~ 

a E r r o r s  a r e  s tandard  e r r o r s  f o r  mu1 t i p l e  de te rm ina t ions ;  t h e  num- 

b e r  o f  de te rm ina t ions  i s  g i ven  i n  parentheses. - Values f o r  u* 
cons tan ts  were c a l c u l a t e d  u s i n g  t h e  f o l l o w i n g  c o n t r i b u t i o n s :  

a - a l k y l ,  -0.10; a - a l k y l ,  -0.02; y - a l k y l ,  -0.01; a-phenyl, +0.20. 

b 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
4
:
1
5
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



332 RABER, BEAUMONT, AND JOHNSTON 

TABLE 2 
1 Associa t ion  Constants  (K1, M- ) f o r  Bridged N i t r i l e s  

a w i t h  Eu(fod)3  i n  CC14. 

Compound Equi l ibr ium Constant  5* 

9 - 

10 - 

- lib 

12 - 

1 3  - 

7 50 

484 + 135 ( 7 )  
a t i  

440 r 120 (8)  PCN 
195 

-0.40 

-0.42 

-0.43 

-0.32 

3802 -0.42 

a b - See f o o t n o t e s  t o  Table  1 .  - See Ref, 3 f o r  a l k y l  groups ( R ) .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
4
:
1
5
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



333 LANTHANI.DE INDUCED SHIFTS. 14 

TABLE 3 

Association Constants (Kl , M- 1 ) for Cyclohexanecarboni triles 
with Eu(fod)3 in CC14. a 

Compound Equilibrium Constant o*b 

14 - 

15 - 

16 

17 - 

18 - 

19 - 

20 - 

21 - 

22 - 

G C N  

cH;"' OCN 

38 

328 

115 t 29 (3) 

97 

336 f 190 (2) 

57 

174 

102 

41 

-0.06 

-0.26 

-0.26 

-0.26 

-0.36 

-0.27 

-0.27 

-0.26 

-0.26 

2 See fuotnates t o  f a b l e  I .  
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334 RABER, BEAUMONT, AND JOHNSTON 

TABLE 4 

1 Associat ion Constants (KlY M- ) f o r  Aromatic N i t r i l e s  

w i t h  Eu(fod)3 i n  CC14. 

b Compound Equ i l i b r i um Constanta 0 

23 
Y 

24 - 
25 .- 

26 - 
27 - 

28 - 
29 - 

30 - 
31 - 
32 - 

/ ON 

PN -mN 

19 2 6 (3 )  

51 

34 i 1 (2 )  

57 + 3 (2 )  

120 ? 9 (2 )  

41 

70 

68 

68 

71 

0.00 

-0.17 

-0.07 

-0.17 

-0.34 

-0.24 

-0.34 

-0.14 

-0.51 

-0.20 

a b - See foo tno te  1 o f  Table 1. - Values for  u constants were ca lc -  

u la ted  using the f o l l o w i n g  con t r i bu t i ons :  0, p methyl, -0.17; 
- m methyl, -0.07; p t e r t - b u t y l ,  -0.20 (see r e f .  20). 
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LANTHANIDE INDUCED SHIFTS. 14 335 

s te r ic  interactions between the E ~ ( f o d ) ~  moiety and the cyclohex- 

ane ring are small, even in the axial conformation. 

fects  therefore might well be less  important for n i t r i l e s  than for  

ketones. The C-C-N distance of a n i t r i l e  i s  larger than the anal- 

ogous C-0 distance of  a ketone by about 1.4 A ,  and  the Eu( fod)3  

group would be located further from the substrate moiety by a cor- 

responding distance. 

Steric. ef-  

0 

If  the preceding analysis i s  correct,  than the variation in 

association constants observed for  n i t r i l e s  1-g must be a conse- 

quence primarily of electronic rather t h a n  s t e r i c  effects.  

order t o  t e s t  th i s  idea we have plotted the logarithm of the asso- 

ciation constants against the u* and u substituent constants 

for  the al iphat ic  and aromatic n i t r i l e s ,  respectively (Figures 1 

and 2 ) .  Although there i s  considerable scat ter  i n  the plots,  i t  

i s  nevertheless clear that  there i s  a correlation between log K1 

and the appropriate substituent constant, u* or 0. These substi t-  

uent constants are based on electronic rather t h a n  s te r ic  effects ,  

I n  

20,21 

and our resul ts  support the hypothesis tha t  s t e r i c  effects  are 

relatively small for  the association equilibria of n i t r i l e s  with 

sh i f t  reagents. The experimental uncertainty in the equilibrium 

constants corresponds t o  about 0.2 log units,7 and th i s  compares 

favorably w i t h  the standard deviations of 0.3 and 0.2 i n  log K1 

calculated by by l inear  regression analysis of the data plotted in 

Figures 1 and 2 ,  respectively. 

The greatest  deviations from the least  squares l ines of  Fig- 

ures 1 and 2 do n o t  correspond t o  unfavorable s te r ic  interactions. 
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0, 
0 
4 

2,o 

1,O 
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0 1 3  

15 

-\ 0 9  

c9\ 
0 11 

0- 

- 

0 1  9 

slope = -2.8 f 0.6 0 2 2  14 0 
intercept = 1.5 t 0.2 
correlation coeff. = 0.70 

I I i I I I 
-0.6 -0.4 4 . 2  a,o 

U* 

Figure 1. A P l o t  of log K, e. u* for  Aromatic 
Nitr i les  w i t h  Eu(fod)g in CC14. 

Thus the point for  13 in Figure 1 f a l l s  abwe the l ine ,  whereas 

s t e r i c  interference result ing from methyl substi tution ( re la t ive  

to  12) would have resulted in an equilibrium constant smaller 

than t h a t  corresponding to  the leas t  squares l ine.  The point i n  

Figure 2 for  n i t r i l e  2 l i e s  below the l ine  as would be expected 

f o r  unfavorable s t e r i c  interactions involving the two ortho methyl 
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LANTHANIDE INDUCED SHIFTS. 14 337 

slope = -1.0 * 0.4 
in t e rcep t  = 1.5 i 0.1 
cor re la t ion  coef f .  = 0.69 

23 

0 

-0,6 -0,4 -0,2 0.0 
cs 

Figure 2 .  A P l o t  o f  log K1 fi. IJ f o r  Aromatic 
N i t r i l e s  w i t h  Eu(fod)g i n  CC14,  

groups. 

- 31, s ince  29 ( w h i c h  has the ident ica l  subs t i t u t ion  pa t te rn  a t  the 

ortho pos i t ions)  f a l l s  prec ise ly  on the  l e a s t  squares l i n e .  

l a r l y ,  t he  poin ts  f o r  19 and 

1 ,  b u t  these compounds both e x i s t  p re fe ren t i a l ly  i n  the  conforma- 

t i o n  w i t h  t he  cyano g roup  equator ia l .22  I f  s t e r i c  repulsions be- 

tween the  s h i f t  reagent and subs t r a t e  moieties were important, the  

points f o r  20 and f i  (ax ia l  C N )  should have f a l l en  below the l i n e .  

B u t  t h i s  i s  c l e a r l y  not the source of the  deviation f o r  

Simi- 

f a l l  well below the  l i n e  in Figure 
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338 RABER, BEAUMONT, AND JOHNSTON 

- 19 ( R  = CH3 R' = H )  20 
- 22 ( R  = H R' = CH3) - 21 

We believe t h a t  t he  l a rge  devia t ions  observed f o r  cases such 

as 13, 19, 22 and 2 r e f l e c t  a combination of experimental e r r o r  

in determination of the equilibrium constants '  and the  approxima- 

t i ons  used in  ca l cu la t ing  the  subs t i t uen t  constants f o r  these  de- 

r iva t ives .  Overall we f ind  no evidence f o r  unfavorable s t e r i c  

i n t e rac t ions  on the complexation w i t h  Eu(fod)3 with any of the  

n i t r i l e s  s tud ied ,  and we conclude t h a t  the var ia t ion  in  the asso- 

c i a t ion  constants r e s u l t s  almost e n t i r e l y  from e l ec t ron ic  e f f e c t s .  
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